
The Nimrod Computational Workbench:A Case Study in Desktop MetacomputingDavid Abramsony Ian Fosterz Jon Giddyx Andrew Lewis#Rok Sosi�cy Robert Sutherst$ Neil White$ySchool of Computing and Information TechnologyGri�th UniversityBrisbane, Qld. 4111AustraliafD.Abramson,R.Sosicg@cit.gu.edu.auzMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 60439U.S.A.foster@mcs.anl.govxCo-operative Research Centre for Distributed Systems TechnologyLevel 7, Gehrmann LaboratoriesUniversity of QueenslandSt. Lucia, Qld.Australiajon@dstc.edu.au# Queensland Parallel Supercomputing FacilityGri�th UniversityBrisbane, Qld. 4111Australiaandrew@qpsf.edu.au$Co-operative Research Centre for Tropical Pest ManagementLevel 5, Gehrmann Laboratories,University of QueenslandSt. Lucia, Qld.Australian.white@ctpm.uq.edu.au
1

The Nimrod Computational Workbench:A Case Study in Desktop MetacomputingAbstractThe coordinated use of geographically distributed computers, or metacomputing,can in principle provide more accessible and cost-e�ective supercomputing than doconventional high-performance systems. However, we lack evidence that metacom-puting systems can be made easily usable or that large numbers of applications areable to exploit metacomputing resources. In this article, we present work that ad-dresses both these concerns. The basis for this work is a system called Nimrod thatprovides a desktop problem-solving environment for parametric experiments. Wedescribe how Nimrod has been extended to support the scheduling of computationalresources located in a wide-area environment and report on an experiment in whichNimrod was used to schedule a large parametric study across the Australian Inter-net. The experiment provided both new scienti�c results and insights into Nimrodcapabilities. We relate the results of this experiment to lessons learned from theI-WAY distributed computing experiment and draw conclusions as to how Nimrodand I-WAY{like computing environments should be developed to support desktopmetacomputing.1 IntroductionA metacomputer is a distributed collection of computers, potentially located at physicallydistant sites, that can be assembled to form a logical parallel computer. This logicalcomputer can be used to access unique resources not accessible at a particular site or toassemble aggregate computational resources superior to that o�ered by a single site [3].In principle, metacomputing can both increase accessibility to supercomputing capabil-ities and provide more cost-e�ective computing than do conventional high-performancesystems.Experiments such as the I-WAY/GII Testbed [4] have demonstrated serious appli-cations on wide-area networks. However, concerns remain regarding the viability of theapproach. Two questions appear particularly troublesome. Is there in practice a large baseof applications able to exploit geographically distributed resources connected by networkswith high latencies and low bisection bandwidth? Will programmers master the complex-ities inherent in computing in geographically distributed, heterogeneous, internetworkedenvironments?The I-WAY [9], Legion [10], and Globe [21] projects are addressing the usability is-sue by developing system services intended to provide the illusion of a single virtualmachine. These e�orts build on experience with systems such as PVM [19] that hidemachine-speci�c details. The LSF network operating system [22] also attempts to pro-vide the illusion of a large processor address space. Job management systems such asLoadLeveler [11], NQS, Codine [6], and others [12] map jobs placed in a work queue tophysically distributed processors. 2

While low-level system services are important, they are not in themselves a su�cientsolution to the problems of metacomputing applications and usability. We believe thatnew techniques are required that integrate metacomputer resources seamlessly into theuser's desktop, much as network �le systems allow users to access �les without being awarethat the bits are stored on remote servers. In this article we describe a problem-solvingsystem that achieves this goal. This system, called Nimrod, combines a specialized envi-ronment with a metacomputer scheduling system. Users interact with a desktop interfaceto formulate parametric experiments, in which a user-supplied application program isexecuted for a range of parameter values. This computational problem is then decom-posed automatically and scheduled transparently across local or remote computationalresources. Hence, Nimrod addresses both usability and applicability concerns: it providesan easy-to-use problem solving environment and allows an important class of problems toaccess metacomputing resources.Nimrod was originally developed to provide seamless access to a homogeneous collec-tion of workstations located on a single local area network. In this environment, Nimrodhas proved extremely e�ective in application studies involving users with a wide range ofparallel programming skills [13]. In this article, we describe extensions to Nimrod thatsupport its use in a metacomputing environment. These extensions include support formultiple architectures, including parallel supercomputers; new job startup mechanismsand �le transfer mechanisms, suitable for wide area network; and alternative authenti-cation mechanisms for job creation at multiple sites. We present the results of a casestudy used to evaluate the success of these extensions. In this case study, Nimrod is usedto apply computers distributed across various Australian High Performance ComputingCenters to a challenging scienti�c problem, namely the execution of a biological modelof an important agricultural pest, the cattle tick. The experiment requires that largenumbers of relatively �ne-grained tasks (jobs averaged 2 minutes) be scheduled acrossheterogeneous systems (IBM SP2, SGI Power Challenge, DEC Alpha) connected by widearea networks with high latencies.This �rst experiment in desktop metacomputing demonstrated the signi�cant potentialadvantages of this approach to scienti�c problem solving. Operating from a desktopenvironment, we were able to solve in 30 minutes a problem that would have required 6hours on a single workstation. The experiment also revealed areas in which our approachrequires further re�nement. We combine these lessons with those derived from the I-WAYdemonstration and derive a list of future challenges that must be addressed if tools suchas Nimrod are to provide desktop access to metasupercomputing in a routine manner.We conclude by indicating how Nimrod can be modi�ed to meet these challenges.2 The Nimrod Problem-Solving EnvironmentNimrod automates the creation and management of large parametric experiments [1,2]. It allows a user to run a single application under a wide range of input conditionsand then to aggregate the results of these di�erent runs for interpretation. In e�ect,Nimrod transforms �le-based programs into interactive \meta-applications" that invokeuser programs much as we might call subroutines.3

Nimrod can be compared with optimization systems designed to locate local or globalminima of user-supplied functions across parameter spaces [5]. It is distinguished fromthese systems by the fact that it does not require changes to user code. Nimrod alsohas similarities with job-scheduling systems such as Codine, LSF, NQS, and LoadLeveler,in that it treats individual runs of the user program as independent jobs that can bescheduled to remote systems. However, unlike other job distribution systems, it hidesthis scheduling and partitioning from the user, who thinks in terms of an experiment runover a parameter space.Nimrod is also distinguished from other optimization and scheduling systems by its useof declarative experiment templates. As we describe below, parametric studies are de�nedusing a simple declarative syntax, which is translated automatically into a graphical userinterface. The user interacts with the experiment via this interface and, in many cases,need not write any additional software. Hence, experiments can be prototyped quickly.2.1 De�ning an ExperimentNimrod processes a user-supplied declarative experiment template to obtain a graphicalcontrol panel used to initiate, monitor, and control an experiment. The template de�nesthe structure and valid ranges for input parameters, which may be supplied as commandline arguments, standard input or general input �les. The control panel incorporatessliders for variable values, lists for discrete values, radio buttons for literal values, and soforth.A template is de�ned by a �le containing parameter statements de�ning input param-eters. (The �le can also contain script statements, de�ning the actions to be performedin di�erent phases of the computation; we describe these below.) A parameter statementhas the following syntax:parameter name label type [type_argument ...]where name speci�es the variable that represents the parameter in the control scripts,label identi�es the parameter to the user, and type indicates how the user will specifythe parameter. Valid types are select, switch, text, list, and range. For each type,further arguments specify subtypes, defaults, and limits for the values.Figure 1 illustrates the use of the parameter statement. The �rst statement de�nes aparameter year with values speci�ed by a user-de�ned list; a separate window is openedwhen the user clicks on the �eld in the interface. The second parameter, ndip, takes atmost seven values between 3 and 9; at run time the user chooses the number of elements,and a list is subsequently generated. The third parameter, description, takes an arbi-trary text string. The fourth, dtype, can take any one of four literal constants. Figure 2shows the control panel generated from the template of Figure 1.2.2 Running an ExperimentOnce a control panel is de�ned, an experiment proceeds as follows:1. We use the sliders and other controls provided by the control panel to select theparameter values for which we wish to run our program.4

parameter year "List of Years" listparameter ndip "Number of dips" range atmost 7 from 3 to 9parameter description "Description" textparameter dtype "Dip Type" select anyof "nodip" "orgph" "vacci" "pyrth"Figure 1: Four example parameter statements, de�ning the input parameters year, ndip,description, and dtype, respectively

Figure 2: Sample user interface generated by template2. We request Nimrod to perform the speci�ed runs. During this phase, we can use asecond status panel, also provided by Nimrod, to track the progress of our experi-ment.3. Finally, we examine the results of the experiment, perhaps using a scienti�c visual-ization package.The parameter choices made in the �rst step determine the number of runs to be performedin the second step. For example, we may specify that parameter X is to take 5 values inthe range 0 to 100, while parameter Y takes 10 values in the range {10 to 10. Together,these two speci�cations request 5 � 10 = 50 runs of our program.Nimrod distinguishes seven phases in the second step: experiment initialization, jobsetup, job execution, job cleanup, experiment termination, server initialization, and servershutdown. Most of the actions to be performed in each phase can be speci�ed in theexperiment template by using script statements. Figure 3 shows script statements for5

job startup, job cleanup and job execution phases. In this example, �le input is sent tothe remote site before the job is started and �le output is returned upon termination.The job execution script indicates how to run the program, using a shell script thataccepts the �le names input and output. This �gure also illustrates the use of parametersubstitution. The $ symbol indicates that parameter substitution should occur when thescript is interpreted. For example, $year will be replaced by the value of the parameteryear when the script runs. The fsubst command searches the �le input and replacesany parameters with their actual values. Hence, the application receives di�erent valuesfor each run. The put and get commands are used to send �les to a remote system andto return results, respectively.script job setup {fsubst input nimrod.inputput nimrod.input input}script job cleanup {get output output.$year.$ndip.$dtype}script job execute { ./run_tick1g input output }Figure 3: Example script statements for job setup, job cleanup, and job executionAn experiment's status panel (Figure 4) is used to initiate, monitor, and control theexperiment. One component of this panel shows the progress of individual jobs. Eachicon represents a job and indicates whether it is awaiting execution, is running, or hascompleted. A special icon is displayed if the job fails, either through an error or becausethe server connection is broken. The user can click on an individual icon to display jobparameters, the name of the machine on which it is running and the exact state of thejob: suspended, waiting, or running. The user can also nominate selected applicationscalar variables to be monitored. Their values are then extracted and displayed alongwith other parameter information. This feature is useful for long-running jobs becauseit allows the user to determine the exact progress of the run, for example by monitoringthe time step or computed error values within an equation solver. Variables are accessedwith the Dynascope library [18, 17], which provides a convenient method for extractingdata from remotely executing programs.The �nal phase of an experiment is data aggregation and display. This functionalityis supported by a user-speci�ed experiment completion script that can invoke externaldata �lters and visualization tools. A �lter is often used to reduce the computed data,and a visualization package such as AVS used to display the results.6

Figure 4: A Nimrod status panel2.3 Nimrod ArchitectureNimrod uses a client-server architecture. A user runs a Nimrod client on their desktopto create and manage experiments. A user can start multiple clients to run more thanone experiment concurrently. Each user also runs their own remote execution server(RES) on each machine that can accept jobs. A RES not only manages the execution ofthe application but also is responsible for transferring �les between the client and servermachines. Since each user runs their own RES, the servers inherit the access privileges ofthe given user.Nimrod does not assume a shared �le system or even a global naming system for �les.When a job is initiated, the input �les required for the run are transferred to the remotesystem, and output �les are returned after each run. A RES builds a unique locationin the target �le system for each job. This avoids �le name space con
icts in the eventthat a machine accepts more than one job or several machines share a �le system. Fore�ciency reasons, it is possible to share common input �les across jobs by using absolutepath names rather than local ones, in which case they are not altered by the server.3 A Case StudyWe describe an experiment in which Nimrod is used to evaluate control strategies forcattle tick, a major agricultural pest in Australia. This study is interesting from a sci-enti�c perspective because it provides new results in management strategies. From ametacomputing perspective, it is interesting because it involves a large number of rel-atively short-lived tasks and because we use Nimrod to map these tasks to computers7

located across Australia. Hence, the experiment provides a challenging test of Nimrod'sscalability and performance.3.1 Experimental DesignCattle ticks (Boophilus microplus) a�ect about one third of Australia's cattle. The cost ofcattle tick management is estimated at $150 million per year, due to lowered productionand expensive control measures. Enormous savings are to be made by optimizing theapplication of control measures and utilization of resistant strains. Optimal control tech-niques also can help to reduce chemical resistance within tick populations and to minimizeresidual pesticide levels.Our experiment uses TICK1 [20, 14], a simulation code developed to study cattle tickecology. TICK1 is a climate-driven, process-based, discrete time step (weekly) model ofthe population dynamics of cattle ticks. It incorporates models of various ecological andphysiological tick development processes, including on-host survival, competition betweenticks, and avoidance behavior in cattle. Process rates are calculated as a function of anumber of meteorological, pasture cover, and host-related variables. Herd compositiondata for Australia, obtained from the Australian Bureau of Resource Economics, areused to derive weighted average herd characteristics and stocking rates. A soil drynessindex is derived from meteorological data by using a single-layer soil water model basedon [7]. Each simulation uses long-term average climate data and is run to equilibrium(ten years) after an initialization. The model is written in Fortran 77 and uses the NCSAnetCDF/HDF data �le format [16] to handle climate surface data and simulation output.A 50 km grid is used across Australia (2785 locations). Simulation inputs are obtainedfrom a commercial geographical information system; these comprise climatic (rainfall,maximum and minimum temperature and evaporation), herd composition, stocking rate,and management strategy data. These data do not change across the scenarios consideredin this article.The goal of the experiment considered in this article was to use TICK1 to design aminimal-cost treatment strategy for all of Australia. Hence, we designed an experimentthat varied TICK1 input parameters relevant to a cost-e�ective strategy, namely the tim-ing, treatment interval, and number of treatments. Three treatments were considered:organophosphate dip, pyrethrin dip, and vaccination. Treatment e�ectiveness was mea-sured in terms of a single metric that combined the costs of reduced live weight gain andtreatment.As discussed in Section 2, Nimrod de�nes experiments in terms of a template thatidenti�es the model variables that are to be varied. In this case, four parameters arede�ned: the time of the year in which treatment begins, the number of treatments afterthat time, treatment frequency, and treatment type. For example, a suitable treatmentstrategy might entail administering a vaccination at fortnightly intervals, up to �ve times,starting at week 15 of the year. In the actual experiment we explored the followingparameter values:� Number of treatments = 3, 5, 7, 9� Starting weeks = 8, 20, 33, 46 8

� Interval between treatments = 2, 5, 8, 12 weeks� Treatment type = vaccination, pyrethrin, organic phosphate dip.This range of values yielded 192 TICK1 runs, each requiring less than 2 minutes toexecute on a modern RISC microprocessor. Hence, the experiment would have taken oversix hours to run on a single workstation. While relatively short, this run was of interestto the biologists; in fact, as we explain below, it is actually a preliminary run intended toidentify strategies to be evaluated in more complex experiments. In addition, it typi�esapplications in which metacomputing converts a time consuming activity to somethingthat can be performed almost in real time from the desktop.3.2 Scienti�c ResultsFigure 5 presents some of the results obtained from the Nimrod-managed TICK1 exper-iment, showing for each grid point the lowest cost obtained over all 192 scenarios. Themaximum cost of $2.40 per head is found in northern Australia. The regions in centraland South Australia with no cattle tick show a zero management cost. The most strikingfeature of the analyses is the e�ect seen in the intermediate zone. These regions representa cost of about $1.20 per head, and further analysis indicates that this is the cost of thecattle tick alone because no treatment is administered in these regions. This suggests thatit is cheaper to leave the ticks untreated than to apply a treatment schedule.The conclusions of this one experiment need to be considered carefully in the contextof the limited information used by the model. In particular, we used only a rudimentarycost model; greater detail is required in terms of the herd structure and stocking rate. Forexample, a more accurate model would re
ect the fact that di�erent types of cattle havedi�erent natural resistance to ticks. In addition, we note that the simulations performedhere represent only a small proportion of the total experiment space that needs to be ex-plored. The timings presented here suggest that a full-scale experiment would require 225hours on a workstation, even before the added complication of seasonal climate variationand tactical dipping is investigated. This same experiment could feasibly be explored inabout 3 hours on a metacomputer of the type used in our work. This will be the basis ofcontinuing work in the area.3.3 Computational Approach and ResultsThe computational platform used for the experiment was constructed from the 78 proces-sors listed in Table 1. Previous Nimrod experiments have used only one type of processor;here, we use three di�erent types of workstations, namely an IBM SP2 and several SGIPower Challenge systems and DEC Alpha workstations. These machines represent quitedi�erent microprocessors and computer architectures, testing Nimrod's ability to handleheterogeneous systems.Nimrod can be used to move both object code and input �les to each remote system.However, to minimize remote storage usage, it copies these �les once for each job anddeletes them upon termination. To reduce communication, we copied constant input �lesonto remote machines just once. Hence, per-job communication requirements comprised9

Figure 5: Variation of tick management cost across Australia: Black regions represent aunit cost of $2.40 her head of cattle, and white pixels are zero costTable 1: Location and type of machine used in the TICK1 metacomputing experimentLocation Machine Type Number of ProcessorsAustralian National University SGI Power Challenge 8University of Adelaide SGI Power Challenge 8University of Queensland SGI Power Challenge 16James Cook University SGI Power Challenge 8Queensland University of Tech. SGI Power Challenge 4Gri�th University (DSTC) DEC Alpha Workstations 4Gri�th University (QPSF) IBM SP2 12University of Queensland (DSTC) DEC Alpha Workstations 18Total 78only the parameter �le, of size 400 bytes. This staging of input �les could easily beautomated. The HDF output �les created for each run are each about 10 MB in size. Asonly a fraction of this data is required for analysis, we used a postprocessor to extract therequired data. The data were written to another �le, which, after compression, occupiedonly about 1.5 kB. Hence, communication and storage requirements for our 192 jobs werereduced from 2 GB to about 300 kB.In the absence of any overheads or load imbalances, the 78 processors listed in Table 1would have completed our experiment in 7 minutes; in practice, it took about 30 minutesof elapsed time. While signi�cantly better than 6 hours, this is not ideal. We attributethis relatively poor performance to Nimrod's centralized scheduling architecture, the slowspeed of the remote job spawning mechanisms used by Nimrod, and the small sizes ofTICK1 tasks. Currently, the Nimrod scheduler is completely centralized. Furthermore,since the scheduler is written using a mixture of Tcl and C, scheduling a single task takes arelatively long time: about 3 seconds on a local area network and an average of 10 seconds10

on the Internet because of network congestion. (Between Brisbane and Adelaide, it tookup to 30 seconds to start jobs.) Since a single TICK1 simulation runs quite quickly|inabout 2 minutes of CPU time|we would need to spawn a job every 1.5 seconds in orderto make e�ective use of 78 processors.Nimrod performance can be improved substantially bymaking relativelyminor changesto its scheduling architecture. For example, we can provide a hierarchical scheduler thatmigrates multiple tasks to subschedulers located at remote sites. To test the e�ectivenessof this approach, we combined a number of TICK1 tasks together into one script, whichmeant that each job ran for a much longer time. Using this technique, we were able toschedule all 78 processors before any jobs completed.3.4 DiscussionCreating the Nimrod experiment template was simple. It took about one hour from thetime we started developing the script to the time we had an application capable of runningon a distributed platform. This result is quite dramatic when compared with alternativetechnologies, such as building a parallel program which performed the same task, or usingan existing job management system. At all times we were able to monitor the experimentin terms of the parameter values using an automatically generated GUI without concernfor the details of the underlying computational platform.The TICK1 experiment also revealed de�ciencies in terms of the techniques used toexploit widely dispersed workstations. In the next section we address these and highlightsome general challenges for desktop metacomputing types of applications.4 Challenges and Technologies for Desktop Meta-computingcIn the preceding section, we discussed a large-scale experiment in which Nimrod wasused to map a moderate-sized parametric experiment across 78 processors located ateight sites connected by the Australian Internet. We are interested in understanding whatthis experiment tells us about the practicality of integrating large-scale metacomputingsystems into desktop applications. Rather than discuss Nimrod in isolation, we placethe discussion in the context of the lessons learned from the I-WAY wide-area computingexperiment. The I-WAY was designed to support a rather di�erent class of applications toNimrod: for the most part, tightly coupled applications with demanding network qualityof service requirements. Hence, it is interesting to understand how I-WAY and Nimrodrequirements correspond and di�er.4.1 The I-WAY ExperimentThe I-WAY project [4] was conceived in early 1995 with the goal of providing a large-scale testbed in which innovative high-performance and geographically distributed appli-cations could be deployed. The testbed comprised an ATM network connecting super-computers, mass storage systems, and advanced visualization devices at 17 di�erent sites11

within North America. It was deployed at the Supercomputing conference (SC'95) in SanDiego in December 1995 and used by over 60 application groups for experiments in high-performance computing, collaborative design, and the coupling of remote supercomputersand databases into local environments. A management and application programming en-vironment, called I-Soft [9], provided uniform authentication, resource reservation, processcreation, and communication functions across I-WAY resources.The I-WAY was successful in demonstrating that large-scale, high-performance meta-computing is feasible and useful. Just as important, it provided the �rst application-oriented testbed in which to identify the critical issues a�ecting future progress in thisarea. In the rest of this section, we review some of the lessons learned from the I-WAYexperiment and discuss how these lessons relate to desktop metacomputing systems suchas Nimrod. This discussion motivates a number of proposals for Nimrod extensions.4.2 Network AwarenessPredictably, network latencies in metacomputing systems tend to be both high|roundtriptimes of hundreds of milliseconds can be expected on a continental scale|and variable.Bandwidth also tends to be scarce and unpredictable. A clear lesson from the I-WAYexperiment was that both applications and tools need to be able to negotiate quality ofservice (QoS) requirements with a scheduler or network management system. In addition,applications and tools may need to be able to determine network properties such astopology and delivered QoS, so that they can adapt algorithms and protocols to maximizeperformance [8].Previous work on wide area scheduling has not really addressed these issues, and itmight appear that the coarse-grained tasks typically scheduled by such systems wouldnot be overly sensitive to these factors. However, the TICK1 experiment emphasizesthat similar information is important if systems such as Nimrod are to provide robustperformance across a range of problem sizes and network topologies. For example:� Information about machine capabilities can be used to determine when cheaperprotocols for job startup are applicable.� Information about network topology and machine capacities can allow us to stagelarge input �les to intermediate nodes in the network.� Information about network bandwidth and latency can be used to control taskgranularity, for example by expanding parameters in the client or the server.We are currently building a new version of Nimrod that will apply these sorts of opti-mizations.4.3 SchedulingMetacomputing systems tends to be highly heterogeneous. This characteristic leads tothe need to maintain multiple code versions, to convert between alternative data formats,and so forth. However, in many respects a more serious problem is that the software andmanagement architectures at di�erent sites are also heterogeneous. For example, di�erent12

sites typically employ di�erent authentication, �le system, and scheduling mechanisms.A metacomputing system cannot impose uniform mechanisms but must interoperate withlocal solutions.Scheduling is a major area in which heterogeneity causes problems. While in local en-vironments it is often possible to deploy a single, uniform scheduler, political and technicalconstraints will typically make it infeasible to provide a single \metacomputer scheduler"to replace the schedulers that are already in place at various sites. I-Soft addressed thisproblem by adopting a two-part strategy that allowed administrators to con�gure ded-icated resources into virtual machines and allowed users to request time on particularvirtual machines. The strategy involved a (1) central scheduler daemon that managedand allocated time on the di�erent virtual machines on a �rst-come, �rst-served basis,and (2) a local scheduler daemon communicating directly with the local site scheduler.Local schedulers performed site-dependent actions in response to requests from the centralscheduler to allocate resources, create processes, and deallocate resources [9].Nimrod does not currently use local machine schedulers. In the TICK1 experiment,we disabled the native schedulers (which in most cases was LSF) and required usersto start Nimrod execution servers directly. In e�ect, we negotiated access to remoteresources manually|via e-mail or telephone. This technique worked well in the TICK1experiment, but it is clear that Nimrod must be integrated with native machine schedulersin the future. For example, Nimrod should be able to negotiate with local schedulers toobtain \low-grade" cycles when machines are otherwise idle. As a result of the case study,we plan to build a new set of remote execution servers for Nimrod that make use of theI-Soft scheduling capability.4.4 Distributed File SystemsMetacomputing systems introduce three related requirements with a �le-system
avor.First, users and tools require access to various status data and utility programs at manysites. Second, users running programs on remote computers must be able to access exe-cutables and con�guration data at many sites. Third, application programs must be ableto read and write potentially large data sets. These three requirements have di�erentcharacteristics. The �rst requires support for multiple users, consistency across sites, andreliability. The second requires somewhat higher performance (if executables are large)but does not require support for multiple users. The third requires, above all, high per-formance. It seems likely that these three requirements are best satis�ed with di�erenttechnologies.In Nimrod, the �le system problem is easier, but only because jobs are constrainedto �t a simple format in which the set of required �les is speci�ed ahead of time bythe user. Hence, Nimrod can operate in environments in which a global �le system is notavailable, moving �les between between sites explicitly as they are required. Furthermore,tra�c can be reduced by staging input �les and �ltering and compressing output �les.These techniques worked well in the TICK1 experiment. For other applications, we canimagine di�culties, for example if the input �les required by an application are datadependent. In these situations, distributed �le system support could be invaluable as ameans of propagating and caching large �les and code in a demand-driven manner. We13

will investigate this issue in future research.4.5 SecuritySecurity is a major and multifaceted issue in metacomputing systems. Ease-of-use con-cerns demand a uniform authentication environment that allows a user to authenticatejust once in order to obtain access to geographically distributed resources; performanceconcerns require that once a user is authenticated, the authorization overhead incurredwhen accessing a new resource be small. Both uniform authentication and low-cost autho-rization are complicated in scalable systems because users will inevitably need to accessresources located at sites with which they have no prior trust relationship.The Nimrod system used for the TICK1 study adopted a simple approach to securityproblems. Each Nimrod user is required to have an account (and hence a prior trustrelationship) at every site. Execution servers are then run under the id of the user. Amagic token is used to ensure that servers accept only authorized requests, in a similarway to X windows (XAuth [15]).The current Nimrod approach works reasonably well across a wide range of platforms.Because it does not require any privileges not already granted to a normal user, it doesnot result in any major security di�culties. Its most signi�cant disadvantage is the needfor a prior trust relationship. We propose to use I-Soft mechanisms to address these issuesin the future.5 ConclusionsWe have described the Nimrod problem solving environment and explained how it canprovide transparent desktop access to metacomputer resources for an important class ofapplications. Users supply an application program and a declarative de�nition of a param-eter study experiment; Nimrod constructs a graphical user interface for the experimentand manages the execution of individual jobs on local and remote resources. Nimrodhas been used successfully to map a medium-scale parametric study over 78 processorslocated at eight sites across Australia; the results of this study yielded new insights intothe management of an important natural pest, the cattle tick. Nimrod demonstrates thatit is indeed possible to achieve ease of use in a metacomputing environment; it also opensan important class of applications to metacomputing. Because Nimrod is a generic tool,it can be applied to a wide range of projects involving scienti�c modeling. Prototypeversions of Nimrod are currently in use by six strategically chosen users. The level ofinterest to date has been most encouraging.Our experiments also identi�ed apparent de�ciencies in the Nimrod architecture. Inan attempt to identify important issues, we have compared Nimrod requirements withproblems identi�ed as important within the I-WAY/GII Testbed wide area networkingexperiment. This comparison revealed striking similarities between Nimrod and I-WAYrequirements. While Nimrod can function e�ectively with extremely simple solutions toproblems of network characterization, scheduling, distributed �le systems, and security,it is clear that future Nimrod-like systems can bene�t signi�cantly from the techniquesproposed for the I-WAY. For example: 14

� Information about network characteristics can be used to optimize scheduling de-cisions, hence improving throughput and allowing users to solve more �ne-grainedproblems.� Interfaces to site schedulers can allow Nimrod to negotiate availability of resourcesbefore starting an experiment; this information can be used to size an experimentto meet user turn-around requirements.� Simple distributed �le system support providing high-performance I/O capabilitieswould allow Nimrod applications to access �les in a more
exible fashion.� Fine-grained authentication schemes that allow access to sites with which a user hasno prior trust relationship can expand dramatically the opportunities for remoteexecution.We are currently designing extensions to Nimrod that will address these and otherissues.AcknowledgmentsThis article reports the work of many people and organizations. We are grateful toGri�th University, Argonne National Laboratory, the Co-operative Research Centres forDistributed Systems Technology (DSTC) and Tropical Pest Management (CTPM), andthe Queensland Parallel Supercomputing Facility. Silicon Graphics machines were madeavailable courtesy of the Australian National University, the University of New SouthWales, the University of Adelaide, the University of Queensland, the Queensland Univer-sity of Technology and James Cook University. The Nimrod project has been funded bythe DSTC since 1994.References[1] D. Abramson, R. Sosi�c, J. Giddy, and M. Cope. The laboratory bench: Distributedcomputing for parametised simulations. In 1994 Parallel Computing and TransputersConference, pages 17{27, Wollongong, Australia, 1994.[2] D. Abramson, R. Sosi�c, J. Giddy, and B. Hall. Nimrod: A tool for performingparametised simulations using distributed workstations. In Proc. of the 4th IEEESymposium on High Performance Distributed Computing, 8 1995.[3] C. Catlett and L. Smarr. Metacomputing. CACM, 35(6):44{52, 1992.[4] T. DeFanti, I. Foster, M. Papka, R. Stevens, and T. Kuhfuss. Overview of the I-WAY: Wide area visual supercomputing. Intl J. Supercomputer Applications, 1996.in press. 15

[5] M. Eldred, D. Outka, C. Fulcher, and W. Bohnho�. Optimization of complexmechanics simulations with object-oriented software design. In Proceedings of the36th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materi-als Conference, pages 2406{2415, New Orleans, LA, 4 1995.[6] F. Ferstl. CODINE Technical Overview. Technical report, Genias, 4 1993.[7] E. A. Fitzpatrick and H. A. Nix. A model for simulating soil water regime in alter-nating fallow-crop systems. Agricultural Meteorology, 6:303{319, 1969.[8] I. Foster, J. Geisler, C. Kesselman, and S. Tuecke. Multimethod communication forhigh-performance metacomputing applications. Preprint, Mathematics and Com-puter Science Division, Argonne National Laboratory, Argonne, Ill., 1996.[9] I. Foster, J. Geisler, W. Nickless, W. Smith, and S. Tuecke. Software infrastructurefor the I-WAY high-performance distributed computing experiment. In Proc. of the5th IEEE Symposium on High Performance Distributed Computing. IEEE, 1996.[10] A. Grimshaw, W. Wulf, J. French, A. Weaver, and P. Reynolds, Jr. Legion: Thenext logical step toward a nationwide virtual computer. Technical Report CS-94-21,Department of Computer Science, University of Virginia, 1994.[11] IBM. IBM LoadLeveler: User's Guide. International Business Machines Corporation,3 1993.[12] J. Kaplan and M. Nelson. A comparison of queuing, cluster and distributed comput-ing systems. Technical Report 109025, NASA, Langley Research Centre, Hampton,Virginia, 23681-0001, 10 1993.[13] A. Lewis, D. Abramson, R. Sosi�c, and J. Giddy. Tool-based parameterisation : Anapplication perspective. In Computational Techniques and Applications Conference,Melbourne, Australia, 7 1995.[14] G. F. Maywald, M. J. Dallwitz, and R. W. Sutherst. A systems approach to cattletick control. In Proceedings of the 4th Biennial Conference of the Simulation Societyof Australia, pages 131{139, 1980.[15] Linda Mui and Eric Pearce. X Window System Administrator's Guide. O'Reilly andAssociates, Inc, Sebastopol, California, 1992.[16] NCSA. The HDF reference manual version 3.3. Technical report, National Centerfor Supercomputing Applications., 2 1994.[17] R. Sosi�c. Design and implementation of Dynascope, a directing platform for compiledprograms. Computing Systems, 8(2):107{134, Spring 1995.[18] R. Sosi�c. A procedural interface for program directing. Software{Practice and Expe-rience, 25(7):767{787, July 1995. 16

[19] V. Sunderam, A. Geist, J. Dongarra, and Mancheck. The PVM concurrent computingsystem: Evolution, experiences and trends. Parallel Computing, 20(4):531{546, 31994.[20] R. W. Sutherst and M. J. Dallwitz. Progress in the development of a populationmodel for the cattle tick boophilus microplus. In Proceedings of the 4th InternationalCongress of Acarology, pages 557{563, 1974.[21] M. van Steen, P. Homburg, L. van Doorn, A. Tanenbaum, and W. de Jonge. Towardsobject-based wide area distributed systems. In Proc. of the International Workshopon Object Orientation in Operating Systems, pages 224{227, 1995.[22] S. Zhou, J. Wang, X Zheng, and P Deliale. Utopia: A load sharing facility for large,heterogeneous distributed systems. Technical Report CSRI-257, Computer SystemsResearch Institute, University of Toronto, Toronto, Canada, M5S 1A1, 1992.

17

